Google обучает компьютерные чипы проектировать самих себя

фото для привлечения внимания
фото для привлечения внимания

Одним из ключевых моментов процесса проектирования компьютерных чипов является процедура оптимального размещения и соединения тысяч отдельных компонентов в единое целое на крошечном кристалле проектируемого чипа.

И не стоит упоминать даже, что от качества выполнения этой работы зависят все основные параметры будущего чипа — его быстродействие, энергоэффективность и т.п.

Данный процесс весьма напоминает процесс создания интерьеров помещений, однако, он более сложен поскольку проектировщикам чипов необходимо рассматривать варианты размещения компонентов не только в одной плоскости, а в «нескольких этажах» структуры чипа, что делает этот процесс очень похожим на игру в стиле 3D-Тетриса.

Сам по себе процесс размещения компонентов чипа является долгим и трудоемким, более того, базовый набор компонентов чипов постоянно улучшается и расширяется и, самые тщательно выполненные проекты очень быстро устаревают и становятся неактуальными. Сейчас длительность «жизненного цикла» чипа находится в диапазоне от двух до пяти лет, но темпы развития современной науки и технологий являются причиной постоянного сокращения этой длительности, постоянной замены имеющихся чипов их обновленными версиями.

Не так давно исследователи компании Google сделали огромный прыжок вперед в области проектирования компьютерных чипов, они создали алгоритм, который способен сам себя обучить и продолжать самообучаться в процессе работы, выбирая оптимальное размещение компонентов электронной схемы на кристалле чипа.

Этот алгоритм производит анализ миллионов возможных вариантов размещения компонентов и делает это гораздо быстрее, чем требуется времени на полуавтоматический анализ тысячи вариантов, что является типовым значением для проекта более-менее сложного чипа. При этом, новый алгоритм может использовать любые новшества сразу по мере их появления, а создаваемые им чипы имеют меньшие размеры, большее быстродействие, меньший уровень энергопотребления и меньшую стоимость производства.

В основе нового алгоритма лежит технология машинного обучения с подкреплением (reinforcement learning). Путем анализа каждый предложенный вариант размещения оценивается, и за него насчитываются или призовые или штрафные баллы. Это позволяет системе найти оптимальные подходы и не ходить по тупиковым ветвям в следующие разы.

И в заключение следует отметить, что исследователи компании Google считают, что созданный ими алгоритм может стать решением, которое будет способно гарантировать сохранение закона Гордона Мура еще некоторое время.

77
2 комментария
2
Ответить